Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Min Xia,^a* Shao-Qin Ge^b and Xiang-Sheng Li^b

^aKey Laboratory of Advanced Textile Materials and Manufacturing Technology, (Zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018, People's Republic of China, and ^bDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China

Correspondence e-mail: xiamin@hzcnc.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.044 wR factor = 0.122 Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Difluoro[1-(1-naphthyliminomethyl)-2naphtholato-*N*,*O*]boron

The title compound, $C_{21}H_{14}BF_2NO$, was synthesized by the reaction of 3-[(*E*)-(naphthalen-1-ylimino)methyl]naphthalen-2-ol, diisopropylethylamine and boron trifluoride etherate. The mean planes of the two naphthalene systems make a dihedral angle of 71.97 (4)°. The crystal packing is stabilized by π - π stacking interactions and van der Waals forces.

Comment

The chelates involving boron trifluoride and organic ligands have attracted attention owing to their unique photoelectronic properties. For instance, the boron dipyrromethenes and dioxaborines with β -diketonates can be used in photodynamic therapy (Halik *et al.*, 2003) and utilized as laser dyes (Assor *et al.*, 1998), molecular probes (Gabe *et al.*, 2004) and nonlinear optical materials (Gorman *et al.*, 2004). This prompted us to prepare the title compound, (I), which is the BF₂ chelate of 3-[(*E*)-(naphthalen-1-ylimino)methyl]naphthalen-2-ol. We report here the crystal structure of (I).

In the title molecule (Fig. 1), all bond lengths and angles show normal values (Allen *et al.*, 1987). The mean planes of the C2–C11 and C12–C21 naphthalene systems make a dihedral angle of 71.97 (4)°. The relatively short intermolecular C···C distances C8···C8ⁱ of 3.522 (3) Å and C14···C16ⁱⁱ of 3.480 (3) Å [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, -y, 1 - z] indicate the presence of π - π stacking interactions, which contribute to the stabilization of the crystal packing (Fig. 2) along with van der Waals forces.

Experimental

At room temperature, the Schiff base 3-[(E)-(naphthalen-1-ylimino)methyl]naphthalen-2-ol (0.5 mmol) was dissolved in anhydrous CH₂Cl₂ (30 ml); diisopropylethylamine (5 mmol) and boron trifluoride etherate (10 mmol) were then added. The resulting solu-

Received 15 May 2006 Accepted 31 May 2006

© 2006 International Union of Crystallography

All rights reserved

organic papers

tion was stirred for 24 h under an N_2 flow. The mixture was washed with water (2 × 50 ml), and the organic layer was dried over anhydrous sodium sulfate. Purification by column chromatography on silica eluting with CH₂Cl₂/petroleum ether (1:2) gave the title chelate in 86% yield as a crystalline solid. Suitable crystals were obtained by evaporation of an acetone/water (1:1) mixed solution (m.p. 511– 513 K).

Crystal data

 $\begin{array}{l} C_{21}H_{14}BF_2NO\\ M_r = 345.14\\ Monoclinic, P2_1/c\\ a = 10.195 \ (2) \ \text{\AA}\\ b = 15.524 \ (3) \ \text{\AA}\\ c = 10.498 \ (2) \ \text{\AA}\\ \beta = 92.28 \ (3)^{\circ}\\ V = 1660.1 \ (6) \ \text{\AA}^3 \end{array}$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.956, T_{\max} = 0.990$

Refinement

Refinement on F^2	w
$R[F^2 > 2\sigma(F^2)] = 0.044$	
$wR(F^2) = 0.122$	
S = 1.06	(4
3771 reflections	Δ
236 parameters	Δ
H-atom parameters constrained	E
-	-

Z = 4 $D_x = 1.381 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K Prism, colourless $0.33 \times 0.18 \times 0.11 \text{ mm}$

15916 measured reflections 3771 independent reflections 2321 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.033$ $\theta_{\text{max}} = 27.5^{\circ}$

$w = 1/[\sigma^2(F_o^2) + (0.0546P)^2]$	
+ 0.1252P]	
where $P = (F_0^2 + 2F_c^2)/3$	
$(\Delta/\sigma)_{\rm max} < 0.001$	
$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ \AA}^{-3}$	
Extinction correction: SHELXLS	97
Extinction coefficient: 0.0083 (14	.)

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Assor, Y., Burshlein, Z. & Rosenuwaks, S. (1998). Appl. Opt. 37, 4914–4920. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565–566.

- Gabe, Y., Urano, Y., Kikuchi, K., Kojima, H. & Nagano, T. (2004). J. Am. Chem. Soc. 126, 3357–3367.
- Gorman, A., Killoran, J., O'Shea, C., Kenna, T., Gallagher, W. M. & O'Shea, D. F. (2004). J. Am. Chem. Soc. 126, 10619–10631.

Figure 1

View of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. H atoms are represented by spheres of arbitrary radii.

Figure 2

The molecular packing. H atoms have been omitted for clarity.

Halik, M., Weseleers, W., Grasso, C., Stellacci, F., Zojer, E., Barlow, S., Bredas, L. C., Perry, J. W. & Marder, S. R. (2003). *Chem. Commun.* pp. 1490–1491.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.